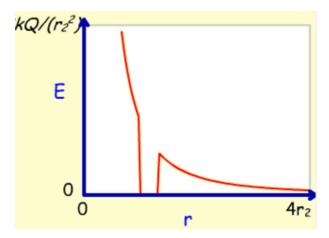

Calculation


Point charge +3Q at center of neutral conducting shell of inner radius r_1 and outer radius r_2 .

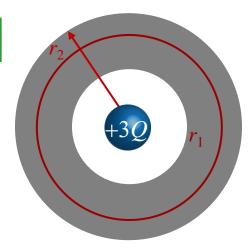
A) What is *E* everywhere?

We know:

$$r < r_1 r > r_2$$

$$E = \frac{1}{4\pi\varepsilon_0} \frac{3Q}{r^2}$$

$$r_1 < r < r_2 \quad E = 0$$



B) What is charge distribution at r_1 ?

B)
$$\sigma = 0$$

c)
$$\sigma > 0$$

Gauss' Law:

$$E=0 \longrightarrow Q_{enc}=0 \longrightarrow \sigma_1 = \frac{-3Q}{4\pi r_1^2}$$

Similarly:

$$\sigma_2 = \frac{+3Q}{4\pi r_2^2}$$