
Circular Light on Linear Polarizer

Q: What happens when circularly polarized light is put through a polarizer along the y (or x) axis ?

A)
$$I = 0$$

B) $I = \frac{1}{2} I_0$
C) $I = I_0$

$$I = \varepsilon_0 c \langle E^2 \rangle$$

= $\varepsilon_0 c \langle E_x^2 + \mathbf{X}_y^2 \rangle$
= $\varepsilon_0 c \frac{E_0^2}{2} \langle \cos^2(kz - \omega t) \rangle$

$$=\frac{1}{2}\cdot\frac{1}{2}\varepsilon_0 cE_0^2$$

Half of before

Electricity & Magnetism Lecture 24, Slide 16