Circularly Polarized Light

There is no reason that ϕ has to be the same for E_x and E_y :

Making ϕ_x different from ϕ_y causes circular or elliptical polarization:

Example: $\phi_{x} - \phi_{y} = 90^{\circ} = \frac{\pi}{2}$ $\theta = 45^{\circ} = \pi/4$ $E_{x} = \frac{E_{0}}{\sqrt{2}} \cos(kz - \omega t)$ $E_{y} = \frac{E_{0}}{\sqrt{2}} \sin(kz - \omega t)$

