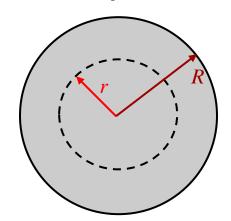

Calculation

Switch S has been open a long time when at t = 0, it is closed. Capacitor C has circular plates of radius R. At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .


What is the electric flux through a circle of radius r in between the plates?

$$\Phi_E = \frac{Q_1}{\varepsilon_0} \pi r^2$$

$$\mathbf{B)} \; \Phi_E = \frac{Q_1}{\varepsilon_0} \pi R^2$$

A)
$$\Phi_E = \frac{Q_1}{\varepsilon_0} \pi r^2$$
 B) $\Phi_E = \frac{Q_1}{\varepsilon_0} \pi R^2$ C) $\Phi_E = \frac{Q_1 r^2}{\varepsilon_0 R^2}$ D) $\Phi_E = \frac{Q_1 \pi r^2}{\varepsilon_0 R^2}$

$$\mathbf{D)} \ \Phi_E = \frac{Q_1 \pi r^2}{\varepsilon_0 R^2}$$

$$\Phi_E = \vec{E} \cdot \vec{A} \longrightarrow \Phi_E = \frac{Q_1}{\varepsilon_0 \pi R^2} \pi r^2 \longrightarrow \Phi_E = \frac{Q_1}{\varepsilon_0} \frac{r^2}{R^2}$$