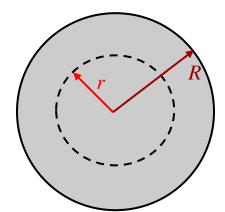

Calculation

Switch S has been open a long time when at t = 0, it is closed. Capacitor C has circular plates of radius R. At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .


What is the magnitude of the B field at radius r?

$$A) B = \frac{\mu_0 I_1}{2\pi R}$$

B)
$$B = \frac{\mu_0 I_1}{2\pi r}$$

C)
$$B = \frac{\mu_0 I_1}{2\pi} \frac{R}{r^2}$$

B)
$$B = \frac{\mu_0 I_1}{2\pi r}$$
 C) $B = \frac{\mu_0 I_1}{2\pi} \frac{R}{r^2}$ D) $B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$

Ampere's Law:
$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o (I + I_D)$$

$$\longrightarrow B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$