Peak AC Problems

"Ohms" Law for each element

NOTE: Good for PEAK values only)

$$I_{\max} Z$$

$$I_{\max} R$$

$$Z = \sqrt{R^2} - I_{\max} X_L$$

$$V = C$$

$$V_{Capacitor} = I_{\max} X_C$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
$$X_L = \omega L$$

Typical Problem

 $X_C = \frac{1}{\omega C}$ A generator with peak voltage 15 volts and angular frequency 25 rad/sec is connected in series with an 8 Henry inductor, a 0.4 mF capacitor and a 50 ohm resistor. What is the peak current through the circuit?

What happens to the impedance if we decrease the angular frequency to 20 rad/sec?

A) Z increases

 V_{gen}

 $V_{Resistor} =$

 $V_{inductor} =$

B) Z remains the same

 $(X_L - X_C)^{:}$ (200 - 100) -> (160 - 125)

