More Follow-Up

Consider the harmonically driven series *LCR* circuit shown. $V_{max} = 100 V$

 $I_{max} = 2 mA$ $V_{Cmax} = 113 V (= 80 \text{ sqrt}(2)) \qquad \longrightarrow \qquad X_c = 40\sqrt{2} k\Omega$

The current leads generator voltage by 45° (cos = sin = 1/sqrt(2)) *L* and *R* are unknown.

By what factor should we increase ω to bring circuit to resonance? i.e. if $\omega_0 = f\omega$, what is f?

A)
$$f = \sqrt{2}$$

B) $f = 2\sqrt{2}$
 $f = \sqrt{\frac{8}{3}}$
 $f = \sqrt{\frac{8}{5}}$
 $f = \sqrt{\frac{1}{5}}$
 $f = \sqrt{\frac{1}{5}}$

$$X_L = X_C \longrightarrow 15f = \frac{40}{f} \longrightarrow f^2 = \frac{40}{15} \longrightarrow f = \sqrt{\frac{8}{3}}$$

C L R R $R = 25\sqrt{2} k\Omega$ $X_{L} = 15\sqrt{2} k\Omega$

V