Charge Density

"What exactly is Lambda? Q/L?? Charge density??."

Linear $(\lambda = Q/L)$ Coulombs/meter Surface $(\sigma = Q/A)$ Coulombs/meter² Volume $(\rho = Q/V)$ Coulombs/meter³

Some Geometry

$$A_{sphere} = 4\pi R^2$$

$$A_{cylinder} = 2\pi RL$$

$$V_{sphere} = \frac{4}{3} \pi R^3$$

$$V_{cylinder} = \pi R^2 L$$

What has more net charge?.

- A) A sphere w/ radius 4 meters and volume charge density ρ = 2 C/m³
- B) A sphere w/ radius 4 meters and surface charge density $\sigma = 2 \text{ C/m}^2$
- C) Both A) and B) have the same net charge.

$$Q_A = \rho V = \rho \frac{4}{3} \pi R^3$$

$$Q_B = \sigma A = \sigma 4\pi R^2$$

$$\frac{Q_A}{Q_B} = \frac{\rho \frac{4}{3} \pi R^3}{\sigma 4 \pi R^2} = \frac{1}{3} \frac{\rho}{\sigma} R = \frac{1}{3} \frac{2}{2} 4 = \frac{4}{3}$$