
Follow Up 2

The switch in the circuit shown has been closed for a long time at which point, the switch is opened.

What is I_2 , the current through R_2 immediately after switch is opened?

(Positive values indicate current flows to the right)

$$A) I_2 = + \frac{V}{R_1 + R_2 + R_3}$$

B)
$$I_2 = +\frac{V}{R_1}$$

A)
$$I_2 = +\frac{V}{R_1 + R_2 + R_3}$$
 B) $I_2 = +\frac{V}{R_1}$ C) $I_2 = 0$ D) $I_2 = -\frac{V}{R_1}$ E) $I_2 = -\frac{V}{R_1 + R_2 + R_3}$

$$\mathsf{E})\,I_2 = -\frac{V}{R_1 + R_2 + R_3}$$

Current through inductor immediately after switch is opened is the same as

the current through inductor immediately before switch is opened

Immediately before switch is opened: $I_L = V/R_1$

Immediately after switch is opened: I_L flows in right loop Therefore, $I_I = -V/R_1$