Calculation

A rectangular loop (height = a, length = b, resistance = R, mass = m) coasts with a constant velocity v_0 in +xdirection as shown. At t = 0, the loop enters a region of constant magnetic field B directed in the -z direction.

What is the magnitude of the emf induced in the loop just after it enters the field?

A)
$$\varepsilon = Babv_0^2$$
 B) $\varepsilon = \frac{1}{2} Bav_0$ C) $\varepsilon = \frac{1}{2} Bbv_0$ D) $\varepsilon = Bav_0$ E) $\varepsilon = Bbv_0$

 \longrightarrow Change in Flux = $d\Phi_B = BdA = Bav_0 dt$

$$\rightarrow \frac{d\Phi_B}{dt} = Bav_o$$

Electricity & Magnetism Lecture 17, Slide 32