Homework: Delayed Feedback

Purpose:
Promote
REFLECTION

- $_{\odot}$ 4) How would you change q_1 (keeping q_2 and q_3 fixed) in order to make the net force on q_2 equal to zero?
- Increase its magnitude and change its sign
- Decrease its magnitude and change its sign
- Increase its magnitude and keep its sign the same
- Decrease its magnitude and keep its sign the same
- There is no change you can make to q, that will result in the fet force on q, being equal to zero.

Submit

- \gtrsim 5) How would you change q₃ (keeping q₁ and q₂ fixed) in order to make the net force on q₂ equal to zero?
- Increase its magnitude and change its sign
- Decrease its magnitude and change its sign
- Increase its magnitude and keep its sign the same
- Decrease its magnitude and keep its sign the same
- There is no change you can make to q, that will result in the fet force on q, being equal to zero.

Submit

These questions serve as a test of your understanding of the questions posed as immediate feedback.

After first deadline
Delayed feedback questions turn
into immediate feedback
questions. 80% credit can be
obtained by answering these
questions correctly before the
second deadline.