Some (more) numerology

• 1 eV = kinetic energy of an electron that has been accelerated through a potential difference of 1 V 1 eV = $q\Delta V = 1.6 \times 10^{-19} \text{ J}$

- h (Planck's constant) = $6.63 \times 10^{-34} \text{ J} \cdot \text{s}$ hc = $1240 \text{ eV} \cdot \text{nm}$
- $m = mass \text{ of electron} = 9.1 \text{ x } 10^{-31} \text{ kg}$ $mc^2 = 511,000 \text{ eV}$
- $U = ke^2/r$, so ke^2 has units $eV \cdot nm$ (like hc) $2\pi ke^2/(hc) = 1/137$ (dimensionless)