

Angular Magnification

$$M = \frac{\theta'}{\theta} = \frac{h_o/d_o}{h_o/d_{near}} = \frac{d_{near}}{d_o}$$

$$M = \frac{\theta'}{\theta} = \frac{h_o/d_o}{h_o/d_{near}} = \frac{d_{near}}{d_o}$$
 For the lens: $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \implies \frac{1}{d_o} = \frac{1}{f} - \frac{1}{d_i}$

For max. magnification, put image at d_{near}:

$$M = d_{\text{near}}/d_0 = d_{\text{near}}/f + 1$$

so set
$$d_i = -d_{near}$$
:
$$\frac{1}{d_o} = \frac{1}{f} + \frac{1}{d_{near}}$$

Smaller f means larger magnification