RC Circuits: Charging

The switches are originally open and the capacitor is uncharged. Then switch S_1 is closed.

- Loop: $\varepsilon I(t)R q(t) / C = 0$
- Just after...: $q = q_0$
 - Capacitor is uncharged
 - $\quad \varepsilon I_0 R = 0 \Longrightarrow I_0 = \varepsilon / R$
- Long time after: $I_c = 0$
 - Capacitor is fully charged
 - $\quad \epsilon q_{\infty}/C = 0 \Longrightarrow q_{\infty} = \epsilon \ C$
- Intermediate (more complex) $q(t) = q_{\infty}(1 - e^{-t/RC})$ $I(t) = I_0 e^{-t/RC}$

