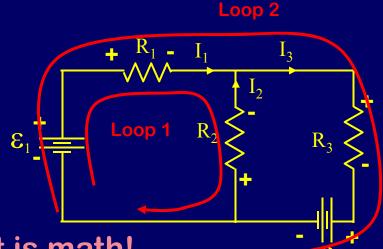


You try it!

In the circuit below you are given \mathcal{E}_1 , \mathcal{E}_2 , \mathcal{R}_1 , \mathcal{R}_2 and \mathcal{R}_3 . Find \mathcal{I}_1 , \mathcal{I}_2 and \mathcal{I}_3 .


- √1. Label all currents (Choose any direction)
- $\sqrt{2}$. Label +/- for all elements (Current goes + \Rightarrow for resistor)
- √3. Choose loop and direction (Your choice!)
- √ 4. Write down voltage drops (Potential increases or decreases?)

Loop 1:
$$+\varepsilon_1 - I_1R_1 + I_2R_2 = 0$$

Loop 2:
$$+\varepsilon_1 - I_1R_1 - I_3R_3 - \varepsilon_2 = 0$$

√ 5. Write down junction equation

Node:
$$I_1 + I_2 = I_3$$

3 Equations, 3 unknowns the rest is math!