
Heat Transfer: Conduction

- Hot molecules have more KE than cold molecules
- High-speed molecules on left collide with low-speed molecules on right teaspoons
 - energy transferred to lower-speed molecules
 - → heat transfers from hot to cold
- I = rate of heat transfer = Q/t [J/s]

$$\rightarrow$$
I = κ A (T_H-T_C)/L

»
$$Q/t = \kappa A \Delta T/\Delta x$$

- $\rightarrow \kappa$ = "thermal conductivity"
 - » Units: J/s-m-C
 - » good thermal conductors...high κ
 - » good thermal insulators ... low κ
- \rightarrow R = L/(A κ) = thermal resistance: Then I = Δ T/R

