Specific Heat for Ideal Gas

• Monatomic Gas (single atom) □ All energy is translational kinetic \Box At constant volume, work = 0 $\Box Q = \Delta K_{tr} = 3/2 nR\Delta T$ $\Box C_{V} = 3/2 R = 12.5 J/(K mole)$ C Diatomic Gas (two atoms) □ Can also rotate $\Box C_{v} = 5/2 R = 20.8 J/(K mole)$

	Gas	$C_{\rm V}\left(\frac{{\rm J/K}}{{\rm mol}}\right)$
Monatomic	He	12.5
	Ne	12.7
	Ar	12.5
Diatomic	H_2	20.4
	N_2	20.8
	O_2	21.0
Polyatomic	CO_2	28.2
	N_2O	28.4