Rotational Inertia Table

For objects with finite number of masses, use I = Σ m r². For "continuous" objects, use table below (p. 263 of book).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Table 8.1 Rotational Inertia for Uniform Objects with Various Geometrical Shapes							
Thin hollow cylindrical shell (or hoop)		Central axis of cylinder	MR ²	Solid sphere		Through center	$\frac{2}{5}MR^2$
Solid cylinder (or disk)		Central axis of cylinder	$\frac{1}{2}MR^2$	Thin hollow spherical shell		Through center	$\frac{2}{3}MR^2$
Hollow cylindrical shell or disk	Top view	Central axis of cylinder	$\frac{1}{2}M(a^2+b^2)$	Thin rod		Perpendicular to rod through end	$\frac{1}{3}ML^2$
				Rectangular plate		Perpendicular to plate through center	$\frac{1}{12}M(a^2+b^2)$

Physics 101: Lecture 13, Pg 8