Summary (with comparison to 1-D kinematics)

Angular	Linear
$\alpha = constant$	a = constant
$\omega = \omega_0 + \alpha t$	$v = v_0 + at$
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	$x = x_0 + v_0 t + \frac{1}{2} a t^2$
And for a point at a distance <i>R</i> from the rotation axis:	
$x = R\theta$ v	$= \omega R$ $a = \alpha R$

Physics 101: Lecture 8, Pg 14