Pulley, Incline and 2 blocks

A block of mass $m_1 = 2.6$ kg rests upon a frictionless incline as shown and is connected to mass m_1 via a flexible cord over an ideal pulley. What is the acceleration of block m_1 if $m_2 = 2.0$ kg?

 $X - direction \Sigma F_x = m a_x$:

Block 1:

$$T - m_1 g \sin(30) = m_1 a_{1x}$$

 $T = m_1 g \sin(30) + m_1 a_{1x}$

 $Y - direction F_v = m a_v$:

Block 2:

$$T - m_2 g = m_2 a_{2y}$$

Note: $a_{1x} = -a_{2y}$

Combine

$$T - m_2 g = m_2 a_{2y}$$

$$m_1 g \sin(30) + m_1 a_{1x} - m_2 g = m_2 a_{2y}$$

$$m_1 g \sin(30) + m_1 a_{1x} - m_2 g = -m_2 a_{1x}$$

$$m_1 a_{1x} + m_2 a_{1x} = m_2 g - m_1 g \sin(30)$$

$$(m_1 + m_2) a_{1x} = g (m_2 - m_1 \sin(30))$$

$$a_1 = \frac{m_2 - m_1 \sin(30)}{m_1 + m_2} g$$

 1.49 m/s^{2}

Physics 101: Lecture 7, Pg 6