An Example

Ex:

$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{L^{-1}}$$

We conclude that

$$N(A^{T}) = \operatorname{Span}\left\{ \begin{bmatrix} 5\\ -2\\ 1 \end{bmatrix} \right\}$$

(Recall: Ax = b is consistent for the A here only if $b_3 - 2b_2 + 5b_1 = 0$. Compare this with the basis vector here.)