Linear Dependence and Independence

Definition: Vectors $v_1, v_2, ..., v_k$ are **linearly independent** if the linear combo problem

$$c_1v_1+c_2v_2+\cdots+c_kv_k=0$$

has only the zero solution: $c_1 = 0$, $c_2 = 0$, ..., $c_k = 0$. That is, there is no non-trivial way to build the zero vector as a linear combo of $v_1, v_2, ..., v_k$. If there is a non-trivial way, i.e. at least one $c_i \neq 0$, then we say the vectors are **linearly dependent**.

Geometrically in \mathbb{R}^n :

two vectors are linearly dependent if the lie on the same line three vectors are linearly dependent if the lie on the same plane