If instead we attempt to solve Ax = b with a general b, we get

$$[A|b] = \begin{bmatrix} 1 & 1 & b_1 \\ 2 & 2 & b_2 \end{bmatrix} \xrightarrow{\mathsf{G-E}} \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 0 & b_2 - 2b_1 \end{bmatrix}$$

For the system to be consistent we need $b_2 - 2b_1 = 0$. This gives us the restrictions representation: C(A) in this case is the set of all vectors b for which $b_2 - 2b_1 = 0$.

Now look at the null space N(A). By its very definition it is characterized by the restrictions representation.

Ex: With A as above, the null space is the set of all vectors x whose entries satisfy $x_1 + x_2 = 0$ (since this is all Ax = 0 reduces to).