Special Subspaces

How do we characterize subspaces, C(A) and N(A) in particular?

Some subspaces are easily vizualized. For example \mathbb{R}^n is a subspace of itself! An we know what \mathbb{R}^n looks like.

 $Z = \{0\}$ is also a subspace, i.e. a general linear combo of two vectors in Z is

 $c_1 0 + c_2 0 = 0 + 0 = 0$

which is back in Z. And Z is easily visualized: it is just the origin in \mathbb{R}^n .

 \mathbb{R}^n and Z are called the **trivial subspaces** of \mathbb{R}^n

Note: Every subset S of \mathbb{R}^n that is also a subspace **must contain the** zero vector (by closure under scalar multiplication):

