More on Column and Null Spaces

Proof that C(A) is a subspace: If b_1 and b_2 are in the column space, then each is a linear combo of the colums $a_1, ..., a_n$ of A: then $b_1 = x_1a_1 + \cdots + x_na_n$ and $b_2 = y_1a_1 + \cdots + y_na_n$ for some scalars $x_1, ..., x_2, y_1, ..., y_n$. Then

$$c_1b_1 + c_2b_2 = c_1(x_1a_1 + \dots + x_na_n) + c_2(y_1a_1 + \dots + y_na_n)$$

= $(c_1x_1 + c_2y_1)a_1 + \dots + (c_1x_n + c_2y_n)a_n$

which is again a linear combo of the columns of A.

Proof that N(A) is a subspace: If x_1 and x_2 are in the null space, then $Ax_1 = 0$ and $Ax_2 = 0$. Therefore

$$A(c_1x_1 + c_2x_2) = c_1Ax_1 + c_2Ax_2 = c_10 + c_20 = 0$$

Hence $c_1x_1 + c_2x_2$ is also in the null space of A.