Ex: $V = \mathbb{R}^2$, S is the first quadrant, i.e. the subset of all vectors whose entries are non-negative.

Closure under addition is OK: with $a \ge 0, b \ge 0, c \ge 0, d \ge 0$

$$\left[\begin{array}{c} a\\b\end{array}\right] + \left[\begin{array}{c} c\\d\end{array}\right] = \left[\begin{array}{c} a+c\\b+d\end{array}\right]$$

which is again in S since $a + c \ge 0$ and $b + d \ge 0$. Closure under scalar multiplication fails: with $a \ge 0$ and $b \ge 0$

$$-1\left[\begin{array}{c}a\\b\end{array}\right] = \left[\begin{array}{c}-a\\-b\end{array}\right]$$

which is NOT in S since $-a \le 0$ and $-b \le 0$. This is not a subspace!