• For 2×2 matrices:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 (just verify that $AA^{-1} = I$)

as long as $ad - bc \neq 0$.

• Diagonal matrices:

$$\begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & 0 \\ 0 & \frac{1}{d_2} & 0 \\ 0 & 0 & \frac{1}{d_3} \end{bmatrix}$$
 (just verify that $AA^{-1} = I$)

as long as
$$d_1 d_2 d_3 \neq 0$$
.
• $(AB)^{-1} = B^{-1}A^{-1}$ (note reverse order)
Proof: $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = I$, so
 $B^{-1}A^{-1}$ is the inverse of AB