Definition:

Row vector × Column vector = $\begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$ = $a_1b_1 + \cdots + a_nb_n$ (a real number)

Note that both vectors must have the same length. **Definition**: If A is $m \times n$, with row vectors $a_1, ..., a_m$ (in \mathbb{R}^n) and B is $n \times p$ with column vectors $b_1, ..., b_p$ (in \mathbb{R}^n), then AB is $m \times p$ and

$$AB = \begin{bmatrix} - & a_1 & - \\ \vdots & \vdots & \vdots \\ - & a_m & - \end{bmatrix} \begin{bmatrix} | & \cdots & | \\ b_1 & \cdots & b_p \\ | & \cdots & | \end{bmatrix} = \begin{bmatrix} a_1b_1 & \cdots & a_1b_p \\ \vdots & \ddots & \vdots \\ a_mb_1 & \cdots & a_mb_p \end{bmatrix}$$

Ivan Contreras, Sergey Dyachenko and Rober