Proof (continued)

Proof of (*): By direct calculation

$$AA^{T}u_{j} = \frac{1}{\sigma_{j}}AA^{T}Av_{j} = \frac{1}{\sigma_{j}}A(\sigma_{j}^{2}v_{j}) \text{ since } A^{T}Av_{j} = \sigma_{j}^{2}v_{j}$$
$$= \sigma_{j}^{2}\left(\frac{1}{\sigma_{j}}Av_{j}\right) = \sigma_{j}^{2}u_{j}$$

when j=1,...,r. So u_j is an eigenvector of AA^T corresponding to eigenvalue $\lambda_j=\sigma_j^2$. Also

$$(u_i, u_j) = u_i^T u_j = \frac{1}{\sigma_i \sigma_j} (A v_i)^T (A v_j) = \frac{1}{\sigma_i \sigma_j} v_i^T A^T A v_j$$
$$= \frac{1}{\sigma_i \sigma_j} v_i^T (\sigma_j^2 v_j) = \frac{\sigma_j}{\sigma_i} v_i^T v_j = \frac{\sigma_j}{\sigma_i} (v_i, v_j) \text{ since } A^T A v_j = \sigma_j^2 v_j$$

We see that when $i \neq j$, $(u_i, u_j) = 0$ because $(v_i, v_j) = 0$. And when i = j we see $||u_j||^2 = ||v_j||^2 = 1$. Thus $u_1, ..., u_r$ are orthonormal.