More Observations

Moreover we note that

$$A^{T}A = \left(U\Sigma V^{T}\right)^{T} U\Sigma V^{T} = V\Sigma^{T} U^{T} U\Sigma V^{T} = V\left(\Sigma^{T}\Sigma\right) V^{T}$$

where $\Sigma^{T}\Sigma = \text{diag}(\sigma_{1}^{2}, ..., \sigma_{r}^{2}, \underbrace{0, ..., 0}_{n-r})$ is $n \times n$

But $A^T A$ is ALWAYS a symmetric matrix and this is just its spectral factorization. We conclude that:

- the columns of V are an orthonormal basis of eigenvectors of $A^T A$, and
- $\sigma_1^2, ..., \sigma_r^2$ are the non-zero eigenvalues of $A^T A$, ordered from largest to smallest.

Ex: Consider

$$A = \left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \end{array} \right]$$