The SVF is like the SpectralTheorem

This factorization is like the spectral factorization $A = Q \Lambda Q^{T}$ but we no longer need to assume that A is square or that it is symmetric. Moreover, any of the diagonal entries of Λ could be negative, but the non-zero diagonal entries of Σ are all positive.

So how do we find U, V and Σ ? Note that (if this factorization is true):

$$
AA^{T} = U\Sigma V^{T} (U\Sigma V^{T})^{T} = U\Sigma V^{T} V\Sigma^{T} U^{T} = U (\Sigma\Sigma^{T}) U^{T}
$$

where $\Sigma\Sigma^{T}$ = diag($\sigma_{1}^{2}, ..., \sigma_{r}^{2}, \underbrace{0, ..., 0}_{m-r}$) is $m \times m$

But AA^T is ALWAYS a symmetric matrix and this is just its spectral factorization. We conclude that:

- the columns of U are an orthonormal basis of eigenvectors of AA^T , and
- $\sigma_1^2,...,\sigma_r^2$ are the non-zero eigenvalues of $AA^{\mathcal{T}}$, ordered from largest to smallest. Ω