The Spectral Theorem:

Theorem: (Spectral factorization of a symmetric matrix) Let A be a real symmetric matrix with eigenvalues $\lambda_1, ..., \lambda_n$. Then A has the factorization

$$A = Q \Lambda Q^T$$

where $\Lambda = \text{diag}(\lambda_1, ..., \lambda_n)$ and Q is an orthogonal matrix whose columns form an orthonormal basis of \mathbb{R}^n of eigenvectors of A.

This is where orthonormal bases arise in a very natural way.

Sketch of the proof: By our previous calculations (since A is Hermitian), the eigenvalues of A are real numbers and

$$N(A - \lambda_i I) \perp N(A - \lambda_j I)$$
 for $\lambda_i \neq \lambda_j$

Using Gram-Schmidt we can construct from the eigenvectors for an eigenvalue λ an orthonormal basis of $N(A - \lambda I)$ for that same eigenvalue. Setting all these eigenvectors as columns of a matrix S, we get $A = S\Lambda S^{-1}$. But S is orthogonal, so call it Q and recall that $S_{\mathbb{R}^+}^{-1} = Q_{\text{COC}}^T$