Step 2: The eigenvalues are real: if x and λ are such that $Ax = \lambda x$, then

$$\underbrace{x^{H}Ax}_{\text{real}} = x^{H}(\lambda x) = \lambda x^{H}x = \lambda \underbrace{\|x\|^{2}}_{\text{real}}$$

and we see that λ is real. Step 3: If $Ax = \lambda x$ and $Ay = \mu y$, $x \neq 0$, $y \neq 0$, $\lambda \neq \mu$, then $x \perp y$:

$$\mu(y, x) = \mu y^{H} x = (\mu y)^{H} x \text{ (since } \mu \text{ is real)}$$

= $(Ay)^{H} x = y^{H} A^{H} x = y^{H} A x \text{ (since } A^{H} = A)$
= $y^{H} (\lambda x) = \lambda(y, x)$

We see then that $(\mu - \lambda)(y, x) = 0$. But $\lambda \neq \mu$, and so (y, x) = 0.