Example (continued)

Case 2, $\lambda = -i$:

$$(K+iI)x = \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{array}{c} ia-b=0 \\ a+ib=0 \end{array}$$

i times the second equation gives the first equation and in this sense K + iI is singular. Thus a = -ib. If we set a = -i we get b = 1 and this gives us the eigenvector

$$x = \left[\begin{array}{c} -i \\ 1 \end{array} \right]$$

The preceding calculations show that we need to deal now not only with complex numbers but also with vectors and matrices whose entries may be complex. \mathbb{C}^n denotes the set of column vectors of length *n* whose entries are complex numbers. Similarly $\mathbb{C}^{m \times n}$ is the set of $m \times n$ matrices with complex entries. We define the conjugate of such vectors and matrices in the natural way: entry by entry.