The third of these can be written as (a, b, d, and f here are row vectors and c_1 and c_2 are any scalars):

	$\begin{bmatrix} c_1a + c_2b \end{bmatrix}$		a		[b]	
det	с	$= c_1 \det$	с	$+ c_2 \det$	с	
	•		÷		:	
	f		f		f	

We show now how these three properties lead to an actual formula for the determinant. We do this by establishing a series of addition properties that follow from these three.

PROP 4: If two rows of A are the same, then det A = 0. Proof: By DEF PROP 2 we must have det $A = - \det A$, and so det A = 0.