Permutation Matrices Are Orthogonal

Ex: Permutation matrices are orthogonal! Let's illustrate this in **R**³ . Let the columns of $I = I_3$ be e_1, e_2, e_3 and let P be the matrix that moves row 1 to 2, 2 to 3, and 3 to 1. Then by a simple calculation:

$$
P = \begin{bmatrix} - & e_3^T & - \\ - & e_1^T & - \\ - & e_2^T & - \end{bmatrix} \Rightarrow PP^T = \begin{bmatrix} - & e_3^T & - \\ - & e_1^T & - \\ - & e_2^T & - \end{bmatrix} \begin{bmatrix} | & | & | \\ e_3 & e_1 & e_2 \\ | & | & | \end{bmatrix} = I
$$

which gives $P^{-1} - P^{T}$

(why?) and so $P^{-1} = P^{T}$.

Theorem: Let Q be orthogonal. Then for any u and v in \mathbb{R}^n

 $\|Qu\| = \|u\|$ (lengths are preserved) $(Qu, Qv) = (u, v)$ (inner products are preserved) Proof: $(Qu,Qv)=(Qu)^{\mathsf{T}}Qv=u^{\mathsf{T}}Q^{\mathsf{T}}Qv=u^{\mathsf{T}}v=(u,v).$ The first conclusion follows from this one by setting $u = v$.

Geometrically rotations and reflections maintain lengths and angles (inner products), as does any composition of the two. -990 Robert G MuncasterUniversity of Illinois at Urbana-Chapplied Linear Algebra——– July 2015 5 / 1