Orthogonal Matrices

Definition: A matrix Q is **orthogonal** if it is square and its columns are orthonormal.

Ex:

$$Q = \left[egin{array}{cccc} rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} & rac{1}{\sqrt{6}} \ rac{1}{\sqrt{3}} & 0 & -rac{2}{\sqrt{6}} \ rac{1}{\sqrt{3}} & -rac{1}{\sqrt{2}} & rac{1}{\sqrt{6}} \end{array}
ight]$$

Note: $Q^T Q = I$ (with Q square) implies that $Q^{-1} = Q^T$. It follows also that $QQ^T = I$ and this shows that the rows of Q are also orthonormal! (Do you see this in the example above?)

Ex: $Q_{\theta} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$, $c = \cos \theta$, $s = \sin \theta$, is a θ rotation of \mathbb{R}^2 . Note that

$$Q_{\theta}^{-1} = \frac{1}{c^2 + s^2} \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}' = Q_{\theta}^{T}$$