Are projections any simpler when we have an orthonormal basis of our subspace S? Let $\{q_1, q_2, ..., q_r\}$ be such a basis and let A have the q_i 's as columns. Then the *ij* entry of $A^T A$ is just (q_i, q_j) (think about it a bit and you will see why). But this inner product is 0 if $i \neq j$ and 1 if i = j. That is, $A^T A = I$. Then the projection matrix is just $P = AA^T$.

Before going further, let us recall projection matrices that project onto a line given by a vector a and observe the simplification that occurs when a is a unit vector q:

$$P = rac{1}{\left\| oldsymbol{a}
ight\|^2} oldsymbol{a} oldsymbol{a}^T = rac{1}{\left\| oldsymbol{q}
ight\|^2} oldsymbol{q} oldsymbol{q}^T = oldsymbol{q} oldsymbol{q}^T \, ext{ since } \, \left\| oldsymbol{q}
ight\| = 1$$