Remember: every subspace S of \mathbb{R}^n is the column space C(A) of any matrix A whose columns are a basis of S. Since we know from the above theory how to project vectors onto a column space, we therefore know how to project vectors onto a general subspace S.

Orthogonal Decompositions Revisited: Recall

 $\mathbb{R}^n=S\oplus S^{\perp}$ means $v=v_S+v_{S^{\perp}}$ uniquely with v_S in S and $v_{S^{\perp}}$ in S^{\perp}

Another way to write this is interms of the matrix P_S projecting onto S and the matrix $P_{S^{\perp}}$ projecting onto S^{\perp} :

$$v = v_S + v_{S^\perp}$$
 where $v_S = P_S v$ and $v_{S^\perp} = P_{S^\perp} v$, $P_{S^\perp} = I - P_S$