The Projection Matrix

As we did with the projection of *b* onto a vector *a*, we wonder whether we can write p = Pb for some matrix *P*:

$$p = A\hat{x} = A((A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b) = (A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}})b$$

and so

$$p = Pb$$
 where $P = A(A^T A)^{-1}A^T$ (is P exactly $\frac{1}{||a||^2}aa^T$ if A has a as its only column?)

The matrix P above is the projection matrix onto the column space of the matrix A.

Note: You should verify for yourself that this P satifies the two projection properties $P^2 = P$ and $P^T = P$ (recall that $A^T A$ is always a symmetric matrix).