Let A be an $m \times n$ matrix and b a vector NOT in the column space of A. Then Ax = b is inconsistent. We want to replace this system with a new one $A\hat{x} = p$ where p IS in the column space of A. The error in using p rather than b is

$$e = b - p = b - A\hat{x}$$

We want *e* to be orthogonal to the subspace C(A) (to get the smallest error), and therefore *e* is in $C(A)^{\perp}$. But this is the same as saying that *e* is in $N(A^{T})$, i.e. $A^{T}e = 0$:

$$0 = A^{T}(b - A\hat{x}) = A^{T}b - A^{T}A\hat{x}$$
$$\Rightarrow \boxed{A^{T}A\hat{x} = A^{T}b}$$

These are called the **normal equations** corresponding to Ax = b and define the **projection** $p = A\hat{x}$ of *b* onto the column space of *A*.