If A has the two vectors here as columns, then

$$A^{T} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{G-J} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \Rightarrow \begin{array}{c} x_{1} = -x_{3} \\ x_{2} = 0 \\ x_{4} \text{ arbitrary} \end{array}$$

The "special" solutions come from setting $x_3 = 1$, $x_4 = 0$ and then $x_3 = 0$, $x_4 = 1$. This gives the final result:

$$S^{\perp} = \operatorname{Span} \left\{ \left[egin{array}{c} -1 \\ 0 \\ 1 \\ 0 \end{array}
ight], \left[egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}
ight]
ight\}$$