Finding Orthogonal Complements

In general, if S and W are subspaces of \mathbb{R}^n and dim $S + \dim W = n$, then $W = S^{\perp}$ and $S = W^{\perp}$. Recalling that dim C(A) = r, dim $C(A^T) = r$, dim N(A) = n - r, and dim $N(A^T) = m - r$, we conclude that

$$N(A)^{\perp} = C(A^{T}), C(A)^{\perp} = N(A^{T}), N(A^{T})^{\perp} = C(A), C(A^{T})^{\perp} = N(A)$$

Given S, how do you go about find S^{\perp} ? The result above provides the clue. Let $\{s_1, s_2, ..., s_r\}$ be a basis of S and let A be a matrix with the basis vectors as columns. Then C(A) is the set of all linear combos of the basis vectors, that is S = C(A). Therefore $S^{\perp} = N(A^{\top})$.

Ex: Let

$$S = \operatorname{Span} \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix} \right\}$$

Find a basis of S^{\perp} .