Recall in Topic 2 Part 4 we looked at an $m \times n$ matrix A as a mapping from vectors x in \mathbb{R}^n to vectors y in \mathbb{R}^m through the equation y = Ax(i.e. through the operation of matrix multiplication). We want to continue this now, but with general vector spaces V and W.

Definition: Let V and W be vector spaces. A mapping $T : V \to W$ is a **linear transformation** from V to W if T has the property

$$T(\underbrace{c_1v_1+c_2v_2}_{\text{in }V})=c_1\underbrace{T(v_1)}_{\text{in }W}+c_2\underbrace{T(v_2)}_{\text{in }W}$$

for any scalars c_1 , c_2 and any vectors v_1 , v_2 in V. (Linear combos map to linear combos with the same coefficients.)(Equivalently T(u+v) = T(u) + T(v), T(cu) = cT(u), i.e. T respects addition and scalar multiplication.)