
Row Space

Finally we consider the row space. We noted above that Row 2 and Row
4 were sums of the other rows in the matrix. This indicates linear
dependence in the row space and we can throw such rows away when
finding a basis of C (AT ). But each row of A represents an edge! So what
happens if we modify the graph by throwing these edges away? We get:
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minimal︸ ︷︷ ︸
smallest # edges

spanning︸ ︷︷ ︸
contains all nodes

tree︸︷︷︸
no loops

Each basis vector of the row space of the edge-node incident matrix
represents one of the edges in a minimal spanning tree for the graph.
This is the smallest simplification of the network (by removing
redundant edges) that maintains its connectedness and flow pattern.
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