Proof of theorem

Proof.

- Assume that $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$.
- Then n|(b-a) and n|(d-c), so b-a=kn and d-c=ln for some $k,l\in\mathbb{Z}$.
- Simplifying gives b = kn + a, d = ln + c.
- Then we have

$$bd = (kn + a)(ln + c) = kln^{2} + aln + kcn + ac,$$

or

$$bd - ac = n(kln + al + kc), (1)$$

so $ac \equiv bd \pmod{n}$.

Also,

$$b+d = (kn + a) + (ln + c) = (k + l)n + (a + c),$$

$$(b+d) - (a+c) = (k + l)n,$$

so
$$a + c \equiv b + d \pmod{n}$$
.

