Theorem

 $\sqrt{2}$ is irrational.

When we have been given almost nothing, let's go with contradiction, i.e. Assume it's false and let 'er rip

Proof.

Let us assume that $\sqrt{2}$ is rational, then $\sqrt{2} = \frac{p}{q}$ for $p, q \in \mathbb{Z}$. Assume that p, q have no common divisors (the fraction is in "reduced form"). By algebra, this gives $2q^2 = p^2$. From this, we have p^2 is even (it is 2 * something). From Corollary, this means p is even, or p = 2k for some $k \in \mathbb{Z}$. Plug back in, we get $2q^2 = 4k^2$ or $q^2 = 2k^2$. Therefore q^2 is even and thus q is even. Both p and q are even, but they cannot have a common divisor! **CONTRADICTION**