Theorem

Let $m, n \in \mathbb{Z}$. Then m and n are both odd if and only if $(m \times n)$ is odd.

Corollary

$$n$$
 and n^2 have the same parity, i.e.

$$I n is odd \iff n^2 is odd;$$

$$a n is even \iff n^2 is even.$$

Proof.

Note that (1) follows directly from the theorem by choosing m = n. For (2), note that $\neg P \iff \neg Q$ is the same as $P \iff Q!$

<□▶ <□▶ < 글▶ < 글▶ < 글▶ 글 ♡ < ♡ 9/13</p>