Example

Theorem

Let $m, n \in \mathbb{Z}$. Then m and n are both odd if and only if $(m \times n)$ is odd.

Proof.

We will do both directions.

 \Rightarrow Assume that *m*, *n* are both odd.

Then
$$m = 2k + 1$$
 and $n = 2l + 1$ for $k, l \in \mathbb{Z}$.

Then we have

$$mn = (2k + 1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1,$$

which is odd.

 \Leftarrow We will use $\neg P \implies \neg Q$, which is equivalent to $Q \implies P$. If it is false that *m* and *n* are both odd, then at least one of them must be even. Without loss of generality, assume m = 2k. Then mn = 2kn = 2(kn) is even.

Why not $Q \implies P$ here?

Let's try it. Assume *mn* is odd. Then mn = 2k + 1 for some $k \in \mathbb{Z}$and then I dunno(?)