Proof.

We have

$$\mathbb{P}(B) = \sum_{\omega \in B} p(\omega) = \sum_{\omega \in A} p(\omega) + \sum_{\omega \in (B \setminus A)} p(\omega),$$

= $\mathbb{P}(A) + \sum_{\omega \in (B \setminus A)} p(\omega).$

Since the last sum is ≥ 0 , we have $\mathbb{P}(B) \geq \mathbb{P}(A)$.

9 Since $A \cap B = \emptyset$, if $x \in A \cup B$, then $x \in A$ or $x \in B$ but not both. Then

$$\mathbb{P}(A \cup B) = \sum_{\omega \in (A \cup B)} p(\omega) = \sum_{\omega \in A} p(\omega) + \sum_{\omega \in B} p(\omega)$$

= $\mathbb{P}(A) + \mathbb{P}(B).$

● Note A ∪ A^c = Ω and A ∩ A^c = ∅. Then

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(A) + \mathbb{P}(A^c),$$

and solve for $\mathbb{P}(A^c)$.